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Abstract:
An overview of impedance- and modal-based substructure analysis techniques used in the Structural
Acoustics Department is presented. The impedance technique described herein offers a substantial
advantage over other coupling techniques because it is uniquely suited to handle data sets of varying
origin. Of particular interest is the combination of numerically and experimentally derived frequency
response data, which is especially useful for analyzing structures comprised of components too
complex to model using the finite element technique. The impedance-based method is derived from
the frequency domain substructure synthesis algorithm introduced by Jetmundsen et al [1], which
offers a significant improvement over the traditional frequency domain technique in terms of the
processing requirements. The modal-based methods involve the coupling of substructure eigenanalysis
results to arrive at coupled system (complex-valued) eigenvectors and allow forced response
simulations for the coupled system. This method offers an alternative to traditional techniques
employed by commercial finite element codes. Limitations of both techniques are identified and
discussed along with potential methods for avoiding these shortcomings. Several example problems
are presented that show each method's usefulness.
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1 Introduction
Substructure modeling is used to simulate the combined dynamic response of finite element (FE)
models for different structures or individual components constituting a larger structure. The
main goal of such a method is to improve the reusability of component models and to reduce the
system matrix sizes [2]. More recently, the focus of substructuring has shifted to combining FE
and experimental results or multiple sets of experimental results for structures that are too
complicated to model accurately with the finite element technique [ 1,3,4].

Numerous substructure coupling techniques have been proposed in the literature. Of these, two
main categories emerge: 1) impedance coupling techniques, and 2) modal coupling techniques.
The impedance coupling techniques focus on spatial information (mass, stiffness, frequency
response functions (FRFs), etc), while the modal coupling techniques employ modal models that
can be derived from numerical models or from experimental data. The impedance coupling
technique described herein is based on the latest frequency domain substructure synthesis
formulation introduced by Jetmundsen et al [1]. This method represents an improvement over
traditional impedance-based synthesis techniques in that it is far less computationally expensive.
The modal coupling technique discussed herein makes use of an eigenvalue solution of the
coupled system matrices, in modal space, to obtain system eigenvectors. The focus of this report
is to document the utility and limitations of both of these coupling techniques.

2 Background
Because the coupling techniques presented herein have developed out of the finite element
substructuring domain, a brief overview of finite element substructure modeling' is provided [1].
The process involves a division of the structure into smaller components (superelements), which
are processed individually to obtain a set of reduced matrices that describe the characteristics of
the superelement as seen by the rest of the structure. The reduced matrices for the superelements
are combined into a single set of matrices that are solved to obtain the assembly solution. (The
assembled reduced matrix is sometimes referred to as the residual structure.) Results for the
assembly solution are then used for the superelement data recovery, during which the
transformation matrix used in the reduction step is used to relate information about the coupling
degrees of freedom to the superelement internal degrees of freedom. While the matrix reduction
theory for static analyses is exact, the reduction process for dynamic analysis requires
approximations for both the mass and damping matrices.

The main advantage of substructuring is improved modeling efficiency. It is often the case that a
FE model is solved several times, each time with small changes to a portion of the model. With
substructuring, only the superelement undergoing a modification and the assembled matrices are
solved for a given iteration. Efficiency is also a factor when a model is comprised of many of
the same superelements. For example, Figure 2.1 shows a gear that is subdivided according to
the symmetry about the axis of rotation. The solid line in this figure shows a single superelement
that is replicated around the axis of rotation to make up the gear model. No matrix reductions
are required for the imaged elements (shown by the dashed lines in Figure 2.1), and thus
substantial time savings are possible for such a model.

'Finite element substructure modeling is also referred to as superelement analysis or simply substructuring



The main disadvantage of substructuring is the loss of accuracy for dynamic analyses. As stated
above, the dynamic reduction of the mass and damping matrices are only approximate. The
approximation arises from the inability to exactly compute the response of the internal nodes due
to fixed boundary nodes. The exact computation would require all of the modes for each
superelement, which is generally prohibitive. MSC/Nastran offers several methods to perform
the dynamic reduction, ranging from a static (Guyan) reduction where the local dynamic effects
are ignored, to component modal synthesis (CMS) where dynamic shape functions are used to
form a dynamic transformation that is used in conjunction with the static transformation to
capture the local dynamic effects. With CMS, different interface conditions can be applied:
fixed (also known as the Craig-Bampton method), free, or mixed (fixed and free).
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Figure 2.1. Sample FE substructuring for a gear with symmetry about the axis of rotation

The modal coupling technique described below is plagued by the same limitation as
substructuring dynamic analysis, namely mode truncation. Effects of mode truncation may also
exist in the Frequency Domain Substructure Synthesis (FDSS) technique, but the main limitation
of FDSS is generally due to incomplete datasets (i.e., degree of freedom truncation). Both of
these techniques and their limitations are described below.

2
3 Modal Coupling Technique
The modal coupling technique involves generalized mass and stiffness matrices , which are
obtained by transforming the system matrices (e.g., mass, stiffness, damping, etc.) from spatial to
modal coordinates:

u = OP, (1)

where u is a displacement vector in the spatial coordinate system, 0 is the mode shape array, and
p is a vector of modal participation factors. Then, by substituting Equation 1 into the equation of
motion (Equation 2) and pre-multiplying by OT yields the generalized matrices, Equation 3. If a

2 Damping can also be accounted for in the same manner as the mass and stiffness.
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numerical model exists (i.e., if the mass and stiffness matrices are known), the mode shapes are
determined by performing an eigenanalysis for each substructure.

[M ]{ii}+ [K]{u}= F , (2)

[W = 'T[ 0 (3)

Obtaining these matrices from experimental data is somewhat more difficult because the mass
and stiffness matrices are not known. However, methods are available to approximate the
matrices from modal analysis results as shown in Reference 5.

Additional mass (AM) and stiffness (AK) can be added to the structure, as shown below in
Equation 4. (Note that superscripts a and b in Equation 4 refer to separate substructures.) The
added stiffness term can represent a coupling stiffness between substructures or can be a single
stiffness connected to ground.

[[M M]] b (4)

An eigenanalysis can be performed on Equation 4 to obtain the resonance frequencies and
normal modes of the modified structure. However, because structural acoustic predictions are
generally focused on obtaining broadband vibration levels due to specific loads, the non-
homogeneous version of Equation 4, along with additional matrices for damping (B) and
acoustics (A), is solved for specific loads at specific frequencies. The complete matrix equation
including the force vector (f) is shown below in Equation 5.

+[[ ] + [g]' [AK][k] + [0]' [A(&)][[]]{P} = [O]T {f}-

Complex-valued mode shapes and resonance frequencies for the homogeneous version of
Equation 5 are computed using a singular value decomposition (SVD) approach [61 or an
eigenanalysis that makes use of a polynomial fit to account for the frequency-dependent acoustic
matrix [7,8]. Three of the major advantages to such a procedure include: 1) reduction of the
matrix sizes of the second eigenvalue analysis through the use of modal matrices, 2) facilitates
the solution of large FE models, as they can be separated into smaller, more manageable
problems, and 3) allows for easy implementation of frequency-dependent added mass, stiffness,
damping3, and acoustic matrices. The limitation of this method is the inability to include all
modes for all components, which is required for an exact numerical solution. However, the
effects of this limitation are often negligible, but must be investigated on a per-model basis via
convergence studies. A discussion of mode truncation effects is provided below in Section 4.2.

3 Note that in addition to the viscous damping, B, hysteresis damping can be added through the use of a complex-
valued stiffness matrix.
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4 FRF Impedance Coupling Techniques
Impedance coupling via frequency response functions requires knowledge of the mobility
matrices, Y, for each of the substructures being combined. A mobility matrix for a structure
represents the inverse of the structure's impedance matrix (Y = Z-, where Z is the structural
impedance), which is defined as follows:

{p}= [Z]-f{i}, (6)

where {p} is the load vector and { 1k is the velocity vector.

In general, the mobility matrices are 6N x 6N complex-valued matrices, where N is the number
of DOFs. The mobility matrix for a single DOF is:

XY . Yry• Y,,; x.• rYo ..8Y, Fx
5' x Y, Y Y'½ Yy. Y'½ Yyy F

Y, Y_ '½ Y .Y , YO Yy ,
a = Y-y YM Y', Y4 Y-r MX' (7)

YA Y,y , Y, l Y• 6, 6 Y, My

where the coordinates are defined in Figure 4.1. As shown in Equation 7, 75% of the
components in the mobility matrix involve a rotational coordinate, an important detail that will
be discussed later.

z

x y

Figure 4.1. Coordinate system used for the definition of the mobility matrix

Mobility matrices similar to the matrix shown in Equation 7 can be defined for all degrees of
freedom for each structure that is to be coupled. Furthermore, these matrices can be partitioned
according to internal and coupling DOFs. The partitioned mobility matrices for two
substructures, A and B, are shown in Equations 8 and 9.

ii.. i Ea
, ]) , (8)

L- c yA
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[-yR yBq
gY (rtF =/.'..-.c/"" • (9)

The classical derivation of substructure synthesis using FRFs employs impedance matrices
instead of mobility matrices [4,5]. With these matrices, displacement compatibility, and force
equilibrium at the coupling DOFs:

UA =UB
AuC C (10)

FA +FcB=F

the following relation for the coupling of substructures A and B can be derived (see Reference 5
for a complete derivation):

Lo[01'
Y* /ZA A+BZ

c cc ci(11)

where Y* is the mobility matrix for the coupled system. As seen in this relation, such a coupling
process requires three matrix inversions: one for the mobility matrix of substructure A (required
to obtain the impedance matrix), one for the substructure B mobility matrix, and a third inversion
for assembled matrix. In general, the number of matrix inversions is one greater than the number
of substructures being combined. The size of these matrices are nA x nA for substructure A, nB X
nB for substructure B, and n* x n* for the combined structure, where n* = nA + nB - nc.

4.1 Generalized FRF Impedance Coupling Technique

The large computation requirements of the FRF coupling relation shown in Equation 1 1 can be
avoided by using the generalized approach developed by Jetmundsen et al [1]. The formulation
for two substructures, A and B, is shown below in Equation 12 (see Reference 9 for a derivation
of this relation):

yA 01 l

= [A y R j-l[~} ~+r{ ]T . (12)

It is apparent from this relation that only a single matrix inversion of size nc x nc is required for
this coupling algorithm, which is a significant improvement over the classical approach
(Equation 11). The theory has been generalized to incorporate Boolean mapping matrices, called
connectivity matrices [9], that define the structural interconnections. The generalized relation is
shown below in Equation 13.

a" 6= [ r] qq q "M (13)
S=1

where M is the Boolean mapping matrix defining the interfacial sign convention for the coupling
forces and their reactions, a is a substructure identifier in addition to a set of internal DOFs, 'is
an interface identifier that implies an interface DOF set, ® represents a matrix element-by-
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element multiplication, and N is the number of substructures. The notation is best understood
with the use of an example.

Consider the structure shown in Figure 4.2, which consists of three substructures-A, B, and
C-and three interfaces-I, J, and K. Each column of the mapping matrix corresponds to an
interface, while each row corresponds to a substructure. A positive direction is arbitrarily
assigned to each interface, as shown by the positive and negative signs adjacent to the interface
arrows in Figure 4.2. The arbitrary sign convention is applied to the interfaces for the purpose of
constructing the mapping matrix. For each substructure (i.e., each row of the matrix), a "+I" or
"-1" is placed in the columns corresponding to an interface that connects to the substructure.
The decision to use a "+I" or "-1" is based upon the chosen sign convention. The mapping
matrix corresponding to the structure in Figure 4.2 is as follows:

I J K
I• -1 0 a (14

M=[-1 0 1]B' (14)

-0 1 -1- C

The mobility matrix, Yaa, is defined as follows:

Y. = 0 Y 0, (15)
-0 0 Y'C

where a represents the internal degrees of freedom for substructure A, b are the internal degrees
of freedom for substructure B, and so on. These DOF sets are the DOFs for which mobility
information will be computed in the synthesized mobility matrix. If response information is
required for any of the interface degrees of freedom, they can be combined in these DOF sets.
However, each interface DOF can only reside in one set. For instance, if results are required for
the interface DOFs associated with the I interface, these DOF can be included in either the a or

Figure 4.2. Frequency domain substructure synthesis diagram
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the b set, but not both. Note that the order of the DOF sets in a = {a, b, c} correspond to the
order of the substructures in the rows of the mapping matrix (Equation 14). The cross mobility
matrix between interface and internal DOFs is defined as follows:

y A yA yA1[ az aj ak
YW= 1'I Y Yb Ybk (16)

Here, the i, j, and k DOF sets represent the DOFs associated with the I, J, and K, interfaces,
respectively. The order of the interface DOF sets, r= { i, j, k}, corresponds to the columns of the
mapping matrix (Equation 14). When multiplied by the mapping matrix, M, using an element by
element multiplication, some of the components in this matrix are nullified (e.g., Ya becomes
zero because the K interface does not contact the A substructure):

-1 0-FyyA A -y yA _yA ol
;L aJ a 1  [ i aj - b jM(&YW= -1 0 1 (&g£, Ybi YbIk 0 Y, (17)

o -1 YLc ccY 0 Y (
1 L Ci cj ck 0 c

The final part of Equation 13 that requires explanation is the summation term:
NEMTMq &yq 8

q=l

Here, a subscript of the mapping matrix represents a row of the matrix. For this example, M, =

[ 1 -1 0]. The summation from q = 1 to N is a summation over the substructures, where the order
corresponds to the rows of the mapping matrix (e.g., q = 1 is the first row of M which
corresponds to substructure A, q = 2 is the second row of M which corresponds to substructure B,
and so on). With this definition, we have Y' =YA where yis the internal DOF set previously

defined.

While the theory described here for performing substructure synthesis analyses is exact,
the accuracy is often limited by shortcomings of the mobility matrices. These deficiencies can
be a result of numerous sources. The most common sources are mode truncation and lack of
rotational degrees of freedom (RDOFs) information. Both of these sources of error are discussed
next.

4.2 Mode Truncation Effects
Mode truncation errors are a result of generating frequency response functions from an
incomplete modal database.4 This database can be derived from either a numerical model or
experimental measurements. In any case, the errors result from using only a partial set of
eigenvalues in a modal summation solution for a system's response. For example, a finite
element model may consist of N DOFs from which N mode shapes can be derived. However,
due to practical limitations, usually only the first M modes are retained (M < N). Such a
truncation generally has a negligible effect on the resonance frequencies, but does shift the

4 When FRFs are used in their "as measured" state, there is no modal truncation error associated with the data.
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antiresonances upward in frequency. (The reason for the upward shift in antiresonance
frequency can be explained by considering the residual term that is discussed later.) While this
effect may have a negligible impact on most applications of the FRFs, substructure synthesis
methods can be particularly sensitive to this type of effect [3,5].

The mode truncation effect is shown below in Figure 4.3, which shows results from modal
summation solutions for a cantilever beam finite element model. The figure indicates the
increased error associated with the point FRF at the tip of the beam (i.e., the free end) as the
number of summed modes decreases from N = M = 14 to M = 3 < N. Because it is often not
practical to use all possible mode shapes in solutions due to memory limitations for numerical
modes or measurement limitations for experimental modes (limited to a finite upper frequency),
the effect of the truncated modes can be approximated with the use of residual terms [5]. These
terms are used to account for truncation of both 'low-frequency' and 'high-frequency' modes.
As described by Ewins [5], the truncated low-frequency modes exhibit a mass-like behavior
while the high-frequency modes exhibit a stiffness-like behavior. If the modal summation is
represented in terms of the modal parameters (resonance frequencies (ak), damping (7r,), and
modal constants ( rA, ) for a general mobility between points j and k), the modal summation has
the following form:

Mi • iffr iA
S_2 at+ir rar2 +'jT, I

MM jk -n=• o +, K k

where M is the residual mass, KjR is the residual stiffness, mi is one larger than the number of

truncated low-frequency modes, and m2 is the number of modes included in the modal
summation plus the number of truncated low-frequency modes. Methods to estimate these terms
can be found in Reference 5. Commercial finite element solvers also may offer methods to

Cantilever Beam Model: Modal Summation Solution

0
;F -20 - J -L -- -I - - J - - - _ _L -- -I - -

E
-40 - -r - -I . . . - - - -I-"

I-€

V
. ..- t ... . .. . . . . . . .-6 -- ---- ---ý , --- o

-80 ... ~~~ ~~~.. J- ... ..... I..... . .. ±-- -

I-I

IE
* -120 -- All Modes (True Solution) - - - - - - - -

4 Modes
...........3 Modes

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

Figure 4.3. Modal summation study showing mode truncation effects
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account for the residual terms when performing a numerical modal summation solution.
MSC/NASTRAN, for example, can compute a residual vector for each load condition to account
for the truncated modes by including the bulk data entry: PARAM,RESVEC,YES. The process
involves a static solution of the model to obtain deflection shapes that are then modified or
discarded to make them linearly independent of the mode shapes. The residual vectors are
computed and appended to the mode shape array.

4.3 Rotational Degree of Freedom Estimation
The second major source of error in frequency response function coupling is associated with
neglecting components of the mobility matrices. Often the components not included are the
mobilities associated with rotational coordinates. As discussed previously, 75% of the complete
mobility matrix involves a rotational coordinate. The importance of these mobilities depends on
the components being coupled and the interface DOF placement. For example, a structure with a
broad interface that is connected using several DOFs, such as the structure shown in Figure 4.4a,
may not require the use of the rotational terms [4], whereas a structure that has collinear interface
DOFs (see Figure 4.4b) may require rotational terms about the collinear axis. If the connecting
substructure is not amenable to using a broad placement of coupling DOFs then rotational DOF
(RDOF) mobilities will be required.

C2

21-erfa--e Interface

(a) (b)

Figure 4.4. Choices of interface DOFs to mitigate effects of not including RDOF
mobilities: (a) interface DOFs may adequately capture rotational effects, and
(b) collinear DOF placement may require RDOF mobilities

Rotational DOF mobilities are usually neglected due to the difficulty associated with measuring
rotational moments and accelerations at a point. While various attempts have been made to
develop an accurate method for measuring these mobilities, the most commonly used approach is
to infer the rotational information from measured translational information using a finite
difference approach [10]. ANSI S2.34-1984 [11] defines standard methods for measuring or
estimating the RDOF mobilities using either translational measurements or rotational
measurements involving specialized fixtures. A compact implementation of the direct methods
of this standard (i.e., the finite difference approach) has been implemented by Duarte and Ewins
[10].

The direct method for estimating RDOF mobilities involves the measurement of translational
point and cross mobilities as shown in Figure 4.5. The number of required measurements is

9
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Figure 4.5. Translational mobility measurements for the finite difference RDOF

approximation

governed by the desired accuracy of the results. The order of accuracy5 is one less than the
number of measurement points when the traditional finite difference formulae are employed. For
example, first order accuracy requires the measurement of mobilities for two locations, second
order requires three locations, and so on. As stated earlier, Duarte and Ewins have developed a
compact implementation of the finite difference approach. Their method employs the following
relation:

Y., - T ] [IY, IT]l1 (20)YITo Y.

where Ymeas is the measured mobility matrix, Yest is the estimated mobility matrix containing
rotational DOF terms, and T is the transformation matrix that is defined according to the
approximation order. Transformation matrices for first and second order schemes are shown in
Table 4.1. These matrices require a constant spacing of the measurement locations similar to the
spacing shown in Figure 4.5. The forward and backward differencing schemes shown in this
table are required for estimating mobility information at the edges of a structure. Transformation
matrices for unequal spacing and approximation orders other than first or second can be

Table 4.1. First and Second order finite difference transformation matrices

First Order Second Order
Frad0 -1 1 [ 0 0 2s]

Forward - m-:,.
1/s -1/s 2s -1 4 -3

Central N/A I[ 0 0]
2s -1 0 Ij

Backward [-1/s S] 1s [1 -4

5 The prediction accuracy is related to the sample spacing as follows: NMh order has accuracy on the order of sN,
where s is the sample spacing.
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developed using the general approach described in Reference 11. Reference 11 relates the
RDOF and translational mobilities in terms of the partial derivatives of the translational mobility
at the point of interest. Formulae to approximate the partial derivatives are then developed based
on the finite difference approach.

5 Illustrative Problems

5.1 Numerical Example of Rotor-Bearing-Stator System Modes Using
Substructuring

The following example of a rotor/stator structure will be used to demonstrate the substructuring
approach using component modes (referred to below as Component Modes Synthesis, or CMS).
For this example, three Nastran normal modes solutions are required: one solution for the rotor
model, one solution for the stator model, and one solution of the combined model6 for validation
purposes. In the combined model, springs are used to couple the rotor and stator through
translation7 at grids 1 and 2 and grids 3 and 4 as shown in Figure 5.1. These grids are also used
to couple the rotor and stator for substructure analysis. The coupling stiffness matrix is obtained
by first considering a simple spring connecting two grids in three translational directions, as
shown in Figure 5.2.

Rotor Grid 3 stator 4

Grid 1Gd.......

! d
Combined

Figure 5.1. Example rotor/stator structure for component mode synthesis example

6 A normal modes solution is possible here because all matrices (including the added stiffness matrix) are
symmetric.
7 While only translational degrees of freedom are considered here, rotational degree of freedom coupling is often
required (e.g., most rolling element bearings have stiffness in all degrees of freedom except rotation about the shaft
centerline axis).
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Fix 2 F2.

F 1Z K F2Z

Figure 5.2. General stiffness component free body diagram

Application of a force balance and Hooke's law to the system in Figure 5.2 yields the following
set of linear equations:

Fix = k. (xI -x2 )+ k,•(y, - y2 )+ kz•(z, - z2)= -F2x

Fly = kyx (XI - X2) + kyy (y, - y2 )+ ky, (z,- Z2 )= -F2y, (21)

F-z = kz(xi - x2)+ kzy(y] - y 2 )+ k. (z, -z2) =-F 2z

or in matrix form:

{~l} K[-' K] .{ U, (22)

where

•i = Fjy = Force VectorFi,
k. k-X kxz

K = kYX k Hy = Stiffness Matrix. (23)
kzX kzy k=z

ui = Yi = Displacement Vector

A similar expression exists for a general viscous damping element, except that the displacement

vector, ii, is replaced by a velocity vector, U. The stiffness matrix shown in Equation 23 is
applied to Equation 4 through AK.

The details of the structure of Figure 5.1 are:

Stator Width: 1.0 m Stator Outside Diameter: 1.0 m

Rotor Width: 0.5 m Rotor Outside Diameter: 0.78 m

Material: Steel Material Loss Factor: 0.005

The rotor and stator are coupled at both rotor shaft ends via a stiffness coupling matrix, K,
representative of a FAFNIR 215k deep groove ball bearing (with the rotational terms neglected
here for demonstration purposes):
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3.8E6 - il.9E4 2.3E7 - il.15E5 - 2.3E6 + il.15E4
K = 2.3E7-il.15E5 1.9E8 - i9.5E5 - 1.6E7 + i8.0E4

- 2.3E6 + il. 15E4 - 1.6E7 + i8.0E4 2.1E7 - il.05E5

This coupling matrix is derived from a Hertzian contact stress model for the 215k bearing. The
procedure for deriving this matrix is summarized in Reference 12. Note that 1) the imaginary
terms in this matrix represent the 0.005 structural loss factor used throughout the model, and 2)
units are N/m, N/rad, or Nmi/rad.

Resonance frequencies and surface admittances are computed for the Nastran model and the
CMS approach. The surface admittances are a result of the coherent dynamic loads (equal
magnitude but opposite direction applied to the rotor and stator surfaces) shown by the arrows in
Figure 5.3. The CMS results are computed using four sets of basis functions. The first set
contains modes up to 659 Hz (25 total modes - rotor and stator combined), the second set
contains modes to 1.659 kHz (50 total modes), the third set contains modes to 2.822 kHz (100
total modes), and the final set contains modes extracted separately for the rotor and stator with a
total of 100 rotor modes (frequencies up to 6.620 kHz) and 100 stator modes (frequencies up to
3.386 kHz). The Nastran surface admittance was computed using a modal frequency response
with a basis set consisting of frequencies up to 2.822 kHz (100 modes).

Figure 5.3. Dynamic loads applied to cutaway rotor/stator model

The results of this study show a maximum percent error of less than 2% between the CMS
resonance frequencies and the Nastran resonance frequencies. As shown in Figure 5.4, the
results do improve as the number of modes included in the CMS basis set increases. Expanding
the modal basis set to include 100 rotor modes and 100 stator modes further reduces the error to
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